5 years ago

Improving baryon acoustic oscillation measurement with the combination of cosmic voids and galaxies.

Charling Tao, Mariana Vargas-Magaña, Gustavo Yepes, Cheng Zhao, Yu Liang, Marcos Pellejero-Ibanez, Francisco-Shu Kitaura, Chia-Hsun Chuang

We develop a methodology to optimise the measurement of Baryon Acoustic Oscillation (BAO) from a given galaxy sample. In our previous work, we demonstrated that one can measure BAO from tracers in under-dense regions (voids). In this study, we combine the over-dense and under-dense tracers (galaxies & voids) to obtain better constraints on the BAO scale. To this end, a generalised de-wiggled BAO model with an additional parameter is developed to describe both the BAO peak and the underlying exclusion pattern of void 2PCFs. We show that after applying BAO reconstruction to galaxies, the BAO peak scale of both galaxies and voids are unbiased using the modified model. Furthermore, we exploit a new description of the combined 2PCF for a multi-tracer analysis with galaxies and voids. In simulations, the joint sample improves by more than 10% the constraint for the post-reconstruction BAO peak position compared to the result from galaxies alone, which is equivalent to an enlargement of the survey volume by 20%. Applying this method to the BOSS DR12 data, we have an 11% improvement for the low-z sample (0.2 < z < 0.5), but a worse constraint for the high-z sample (0.5 < z < 0.75), which is consistent with statistical fluctuations for the current survey volume. We further find that a larger sample gives a more robust improvement due to less statistical fluctuations.

Publisher URL: http://arxiv.org/abs/1802.03990

DOI: arXiv:1802.03990v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.