5 years ago

Strong nonlocality variations in a spherical mean-field dynamo.

A. Brandenburg, P. Chatterjee

To explain the large-scale magnetic field of the Sun and other bodies, mean-field dynamo theory is commonly applied where one solves the averaged equations for the mean magnetic field. However, the standard approach breaks down when the scale of the turbulent eddies becomes comparable to the scale of the variations of the mean magnetic field. Models showing sharp magnetic field structures have therefore been regarded as unreliable. Our aim is to look for new effects that occur when we relax the restrictions of the standard approach, which becomes particularly important at the bottom of the convection zone where the size of the turbulent eddies is comparable to the depth of the convection zone itself. We approximate the underlying integro-differential equation by a partial differential equation corresponding to a reaction-diffusion type equation for the mean electromotive force, making an approach that is nonlocal in space and time feasible under conditions where spherical geometry and nonlinearity are included. In agreement with earlier findings, spatio-temporal nonlocality lowers the excitation conditions of the dynamo. Sharp structures are now found to be absent. However, in the surface layers the field remains similar to before.

Publisher URL: http://arxiv.org/abs/1802.04231

DOI: arXiv:1802.04231v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.