5 years ago

pyGDM -- A python toolkit for full-field electro-dynamical simulations and evolutionary optimization of nanostructures.

Peter R. Wiecha

pyGDM is a python toolkit for electro-dynamical simulations in nano-optics based on the Green Dyadic Method (GDM). In contrast to most other coupled-dipole codes, pyGDM uses a generalized propagator, which allows to cost-efficiently solve large monochromatic problems such us polarization-resolved calculations or raster-scan simulations with a focused beam or a quantum-emitter probe. A further peculiarity of this software is the possibility to very easily solve 3D problems including a dielectric or metallic substrate. Furthermore, pyGDM includes tools to easily derive several physical quantities such as far-field patterns, extinction and scattering cross-section, the electric and magnetic near-field in the vicinity of the structure, the decay rate of quantum emitters and the LDOS or the heat deposited inside a nanoparticle. Finally, pyGDM provides a toolkit for efficient evolutionary optimization of nanoparticle geometries in order to maximize (or minimize) optical properties such as a scattering at selected resonance wavelengths.

Publisher URL: http://arxiv.org/abs/1802.04071

DOI: arXiv:1802.04071v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.