Topological transitions in continuously-deformed photonic crystals.
We demonstrate that multiple topological transitions can occur, with high-sensitivity, by continuous change of the geometry of a simple 2D dielectric-frame photonic crystal consisting of circular air-holes. By changing the radii of the holes and/or the distance between them, multiple transitions between normal and topological photonic band gaps (PBGs) can appear. The time-reversal symmetric topological PBGs resemble the quantum spin-Hall insulator of electrons and have two counter-propagating edge states. We search for optimal topological transitions, i.e., sharp transitions sensitive to the geometry, and optimal topological PBGs, i.e., large PBGs with clean spectrum of edge states. Such optimizations reveal that dielectric-frame photonic crystals are promising for optical sensors and unidirectional waveguides.
Publisher URL: http://arxiv.org/abs/1710.08529
DOI: arXiv:1710.08529v2
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.