5 years ago

N-break states in a chain of nonlinear oscillators.

M. Dobson, P.G. Kevrekidis, A.S. Rodrigues

In the present work we explore a pre-stretched oscillator chain where the nodes interact via a pairwise Lennard-Jones potential. In addition to a homogeneous solution, we identify solutions with one or more (so-called) "breaks", i.e., jumps. As a function of the canonical parameter of the system, namely the precompression strain $F$, we find that the most fundamental one break solution changes stability when the monotonicity of the Hamiltonian changes with $F$. We provide a proof for this (motivated by numerical computations) observation. This critical point separates stable and unstable segments of the one break branch of solutions. We find similar branches for 2 through 5 break branches of solutions. Each of these higher "excited state" solutions possesses an additional unstable pair of eigenvalues. We thus conjecture that $k$ break solutions will possess at least $k-1$ (and at most $k$) pairs of unstable eigenvalues. Our stability analysis is corroborated by direct numerical computations of the evolutionary dynamics.

Publisher URL: http://arxiv.org/abs/1802.03477

DOI: arXiv:1802.03477v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.