3 years ago

A Critical Cross-Catalytic Relationship Determines the Outcome of Competition in a Replicator Network

A Critical Cross-Catalytic Relationship Determines the Outcome of Competition in a Replicator Network
Douglas Philp, Tamara Kosikova
A network of two synthetic replicators exhibits a critical unidirectional cross-catalytic relationship that directs competing replication processes. In this network, nitrone N bearing a 6-methylamidopyridine recognition site can participate in 1,3-dipolar cycloaddition reactions with two maleimides that differ in the relative position of their carboxylic acid recognition site: either para (Mp) or meta (Mm) relative to the maleimide ring. These cycloaddition reactions create replicators trans-Tp and trans-Tm. In isolation, trans-Tp templates its own formation with an efficiency that is markedly greater than that of trans-Tm. Kinetic fitting and simulations reveal that this efficiency arises from a higher template-mediated rate constant for the cycloaddition and lower stability of the trans-Tp template duplex, compared to trans-Tm. By contrast, in a situation where Mp and Mm compete for a limited quantity of N, the normally less efficient trans-Tm outcompetes trans-Tp. Through a series of comprehensive kinetic 19F{1H} NMR spectroscopy experiments, this system-level outcome is traced to a critical cross-catalytic pathway, whereby the presence of trans-Tp templates the formation of trans-Tm, but not vice versa. Replicator trans-Tm also reduces the efficiency of its competitor trans-Tp by sequestering trans-Tp in a heteroduplex that is more stable than homoduplex [Tp·Tp]. The addition of different templates as instructions reveals that, while the outcome of competition between replicators can be altered selectively, it is limited by the reaction environment employed. These results represent a conceptual and practical framework for the examination of selectivity in replication networks operating outside well-stirred batch reactor conditions.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b06270

DOI: 10.1021/jacs.7b06270

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.