3 years ago

A Structural Basis for Biguanide Activity

A Structural Basis for Biguanide Activity
Eugene F. DeRose, Michael R. Duff, Scott A. Gabel, Juno M. Krahn, Lars C. Pedersen, Elizabeth E. Howell, Robert E. London
Metformin is the most commonly prescribed treatment for type II diabetes and related disorders; however, molecular insights into its mode(s) of action have been limited by an absence of structural data. Structural considerations along with a growing body of literature demonstrating its effects on one-carbon metabolism suggest the possibility of folate mimicry and anti-folate activity. Motivated by the growing recognition that anti-diabetic biguanides may act directly upon the gut microbiome, we have determined structures of the complexes formed between the anti-diabetic biguanides (phenformin, buformin, and metformin) and Escherichia coli dihydrofolate reductase (ecDHFR) based on nuclear magnetic resonance, crystallographic, and molecular modeling studies. Interligand Overhauser effects indicate that metformin can form ternary complexes with p-aminobenzoyl-l-glutamate (pABG) as well as other ligands that occupy the region of the folate-binding site that interacts with pABG; however, DHFR inhibition is not cooperative. The biguanides competitively inhibit the activity of ecDHFR, with the phenformin inhibition constant being 100-fold lower than that of metformin. This inhibition may be significant at concentrations present in the gut of treated individuals, and inhibition of DHFR in intestinal mucosal cells may also occur if accumulation levels are sufficient. Perturbation of folate homeostasis can alter the pyridine nucleotide redox ratios that are important regulators of cellular metabolism.

Publisher URL: http://dx.doi.org/10.1021/acs.biochem.7b00619

DOI: 10.1021/acs.biochem.7b00619

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.