3 years ago

Synthesis and Applications of Boronate Affinity Materials: From Class Selectivity to Biomimetic Specificity

Synthesis and Applications of Boronate Affinity Materials: From Class Selectivity to Biomimetic Specificity
Hui He, Zhen Liu
Due to the complexity of biological systems and samples, specific capture and targeting of certain biomolecules is critical in much biological research and many applications. cis-Diol-containing biomolecules, a large family of important compounds including glycoproteins, saccharides, nucleosides, nucleotides, and so on, play essential roles in biological systems. As boronic acids can reversibly bind with cis-diols, boronate affinity materials (BAMs) have gained increasing attention in recent years. However, real-world applications of BAMs are often severely hampered by three bottleneck issues, including nonbiocompatible binding pH, weak affinity, and difficulty in selectivity manipulation. Therefore, solutions to these issues and knowledge about the factors that influence the binding properties are of significant importance.

Publisher URL: http://dx.doi.org/10.1021/acs.accounts.7b00179

DOI: 10.1021/acs.accounts.7b00179

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.