5 years ago

Concise N-doped Carbon Nanosheets/Vanadium Nitride Nanoparticles Materials via Intercalative Polymerization for Supercapacitors

Yongtao Tan, Lingbin Kong, Zhe Wang, Zhenghua Tang, Fen Ran, Ying Liu, Long Kang, Zhen Liu
N-doped carbon nanosheets/vanadium nitride nanoparticles (N-CNS/VNNPs) are synthesized via a novel method combining surface-initiated in-situ intercalative polymerization and thermal-treatment process in NH3/N2 atmosphere. The pH value of the synthesis system plays a critical role in constructing the structure and enhancing electrochemical performance for N-CNS/VNNPs, which are characterized by SEM, TEM, XRD, and XPS, and measured by electrochemical station, respectively. The results show that N-CNS/VNNPs materials consist of 2D N-doped carbon nanosheets and 0D VN nanoparticles. With the pH value decreasing from 2 to 0, the sizes of both carbon nanosheets and VN nanoparticles decreased to smaller in nanoscale. The maximum specific capacitance of 280 F g−1 at the current density of 1 A g−1 for N-CNS/VNNPs is achieved in three-electrode configuration. The asymmetric energy device of Ni(OH)2||N-CNS/VNNPs offers a specific capacitance of 89.6 F g−1 and retention of 60% at 2.7 A g−1 after 5000 cycles. The maximum energy density of Ni(OH)2 ||N-CNS/VNNPs asymmetric energy device is as high as 29.5 Wh kg−1.

Publisher URL: https://www.nature.com/articles/s41598-018-21082-w

DOI: 10.1038/s41598-018-21082-w

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.