Effect of calcination temperature on the properties of Ti/SnO 2 -Sb anode and its performance in Ni-EDTA electrochemical degradation
Abstract
Pd-doped Ti/SnO2-Sb anode was prepared at different calcination temperatures by a wet-impregnation method and employed in simultaneous electrochemical catalytic degradation of Ni-EDTA and recovery of nickel. The results showed that Ti/SnO2-Sb-Pd-500 could achieve the highest electrochemical activity (87.5% of Ni-EDTA removal efficiency), superior durability (50.7 h of accelerated lifetime), and higher Ni recovery (19.8%) on cathode. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) analysis suggested that Ni-EDTA degradation on anode was mainly indirect oxidation-controlled reaction, attributing to the high oxide state of MOX + 1 and MOX(·OH), rather than direct oxidation. Scanning electron microscope (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analyses indicated that calcination temperature could modify the morphology of electrode surface and affect the incorporation and valence state transformation of metal species (Sb and Pd) in SnO2 lattice. Ti/SnO2-Sb-Pd-500 achieved the highest electrochemical capacity with the highest levels of adsorbed oxygen Oads/ET (27.11%) and lattice oxygen Olat/ET (29.69%). Moreover, the operation conditions for Ni-EDTA electrochemical degradation were optimized. These findings were valuable for developing a high-performance electrode for Ni-EDTA electrochemical degradation.
Publisher URL: https://link.springer.com/article/10.1007/s11356-018-1444-1
DOI: 10.1007/s11356-018-1444-1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.