5 years ago

High temporal resolution motion estimation using a self-navigated simultaneous multi-slice echo planar imaging acquisition

Joshua M. Kuperman, Nathan S. White, Anders M. Dale, Jose R. Teruel
Background Subject motion is known to produce spurious covariance among time-series in functional connectivity that has been reported to induce distance-dependent spurious correlations. Purpose To present a feasibility study for applying the extended Kalman filter (EKF) framework for high temporal resolution motion correction of resting state functional MRI (rs-fMRI) series using each simultaneous multi-slice (SMS) echo planar imaging (EPI) shot as its own navigator. Study Type Prospective feasibility study. Population/Subjects Three human volunteers. Field Strength/Sequence 3T GE DISCOVERY MR750 scanner using a 32-channel head coil. Simultaneous multi-slice rs-fMRI sequence with repetition time (TR)/echo time (TE) = 800/30 ms, and SMS factor 6. Assessment Motion estimates were computed using two techniques: a conventional rigid-body volume-wise registration; and a high-temporal resolution motion estimation rigid-body approach. The reference image was resampled using the estimates obtained from both approaches and the difference between these predicted volumes and the original moving series was summarized using the normalized mean squared error (NMSE). Statistical Tests Direct comparison of NMSE values. Results High-temporal motion estimation was always superior to volume-wise motion estimation for the sample presented. For staged continuous rotations, the NMSE using high-temporal resolution motion estimates ranged between [0.130, 0.150] for the first volunteer (in-plane rotations), between [0.060, 0.068] for the second volunteer (in-plane rotations), and between [0.063, 0.080] for the third volunteer (through-plane rotations). These values went up to [0.384, 0.464]; [0.136, 0.179]; and [0.080, 0.096], respectively, when using volume-wise motion estimates. Data Conclusion Accurate high-temporal rigid-body motion estimates can be obtained for rs-fMRI taking advantage of simultaneous multi-slice EPI sub-TR shots. Level of Evidence: 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/jmri.25953

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.