5 years ago

Structural and functional characterization of the Vindoline biosynthesis pathway enzymes of Catharanthus roseus

Bilal Ahmad, Sudeshna Bose, Anindyajit Banerjee, Shrabasti Jana, Saikat Chakrabarti, Harshita Tiwari

Abstract

Vinblastine and its related compound vincristine are important mono terpenoid indole alkaloids accumulated in the leaves of Catharanthus roseus (Madagascar periwinkle). They serve as major anticancer drugs. Vinblastine is formed by the condensation of vindoline and catharanthine. The vindoline moiety is derived from tabersonine via vindoline biosynthesis pathway. The reaction sequence from tabersonine to vindoline is now well established and the enzymes involved in this pathway are identified. However, to date, the structures of the enzymes involved in the vindoline biosynthesis pathway are not known, leading to limited mechanistic understanding of the substrate binding and catalysis. The purpose of this work is to provide structural insight regarding all the steps of the vindoline pathway via rigorous homology modeling, molecular docking, and molecular dynamics analyses. Substrate and cofactors required for each step were docked onto the computationally built and validated three-dimensional (3D) model of the corresponding enzyme, and the catalytic reaction was analyzed from the structural point of view. Possible binding modes of the substrates and cofactors were generated and corresponding binding residues were identified. Enzyme-substrate models were verified based on structure evaluation methods and molecular dynamics based approaches. Findings of our analysis would be useful in rational designing of these important enzymes aimed toward bio-production of vindoline.

Publisher URL: https://link.springer.com/article/10.1007/s00894-018-3590-2

DOI: 10.1007/s00894-018-3590-2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.