4 years ago

Molar absorption coefficients and stability constants of Zincon metal complexes for determination of metal ions and bioinorganic applications

Molar absorption coefficients and stability constants of Zincon metal complexes for determination of metal ions and bioinorganic applications
Zincon (ZI) is one of the most common chromophoric chelating probes for the determination of Zn2+ and Cu2+ ions. It is also known to bind other metal ions. However, literature data on its binding properties and molar absorption coefficients are rather poor, varying among publications or determined only in certain conditions. There are no systematic studies on Zn2+ and Cu2+ affinities towards ZI performed under various conditions. However, this widely commercially available and inexpensive agent is frequently the first choice probe for the measurement of metal binding and release as well as determination of affinity constants of other ligands/macromolecules of interest. Here, we establish the spectral properties and the stability of ZI and its complexes with Zn2+, Cu2+, Cd2+, Hg2+, Co2+, Ni2+ and Pb2+ at multiple pH values from 6 to 9.9. The obtained results show that in water solution the MZI complex is predominant, but in the case of Co2+ and Ni2+, M(ZI)2 complexes are also formed. The molar absorption coefficient at 618 nm for ZnZI and 599nm for CuZI complexes at pH7.4 in buffered (I =0.1M) water solutions are 24,200 and 26,100M1 cm1, respectively. Dissociation constants of those complexes are 2.09×106 and 4.68×1017 M. We also characterized the metal-assisted Zincon decomposition. Our results provide new and reassessed optical and stability data that are applicable to a wide range of chemical and bioinorganic applications including metal ion detection, and quantification and affinity studies of ligands of interest. Synopsis Accurate values of molar absorption coefficients of Zincon complex with Zn2+, Cd2+, Hg2+, Co2+, Ni2+, Cu2+, and Pb2+ for rapid metal ion quantification are provided. Zincon stability constants with Zn2+ and Cu2+ in a wide pH range were determined.

Publisher URL: www.sciencedirect.com/science

DOI: S0162013417303872

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.