5 years ago

Integration of Graphene, Nano Sulfur, and Conducting Polymer into Compact, Flexible Lithium–Sulfur Battery Cathodes with Ultrahigh Volumetric Capacity and Superior Cycling Stability for Foldable Devices

Integration of Graphene, Nano Sulfur, and Conducting Polymer into Compact, Flexible Lithium–Sulfur Battery Cathodes with Ultrahigh Volumetric Capacity and Superior Cycling Stability for Foldable Devices
Yuxi Xu, Peitao Xiao, Fanxing Bu, Guanhui Yang, Yu Zhang
Lithium–sulfur batteries, as one of the most promising next-generation batteries, attract tremendous attentions due to their high energy density and low cost. However, their practical application is hindered by their short cycling life and low volumetric capacity. Herein, compact, flexible, and free-standing films with a sandwich structure are designed simply by vacuum filtration, in which nanosulfur is homogenously coated by graphene and poly(3,4-ethylene-dioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). This unique hierarchical structure not only provides a highly conductive network and intimate contacts between nanosulfur and graphene/PEDOT:PSS for effective charge transportation, but also offers synergistic physical restriction and chemical confinement of dissoluble intermediate lithium polysulfides during electrochemical processes. Therefore, these conductive compact films, used directly as cathodes, show the highest reversible volumetric capacity of 1432 Ah L−1 at 0.1 C and 1038 Ah L−1 at 1 C, and excellent cycling stability with a minimal decay rate of 0.04% per cycle over 500 cycles at 1 C. Meanwhile, remarkable rate performance with a high capacity of 701 mAh g−1 at 4 C is also achieved. Soft-packaged batteries based on this flexible cathode are further fabricated and demonstrate excellent mechanical and electrochemical properties with little capacity decay under folded state, highlighting the practical application of our deliberately designed electrode in a flexible power system. A novel compact and flexible film with sandwich structure integrated with graphene, nanosulfur, and poly(3,4-ethylene-dioxythiophene):poly(styrenesulfonate) is synthesized simply by vacuum filtration. The free-standing film can be used directly as cathodes for lithium–sulfur coin cell batteries with a highest volumetric capacity and long-term cycling stability, and high-performance soft-packaged batteries.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adma.201703324

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.