5 years ago

Integrative approaches in HIV-1 non-nucleoside reverse transcriptase inhibitor design

Integrative approaches in HIV-1 non-nucleoside reverse transcriptase inhibitor design
Murugesan Vanangamudi, Jan Kihlberg, Hadi Al Shamaileh, N Arul Murugan, Rakesh N Veedu, Vigneshwaran Namasivayam, Vasanthanathan Poongavanam
The design of inhibitors for human immunodeficiency virus type-1 reverse transcriptase (HIV-1 RT) is one of the most successful approaches for the treatment of HIV infections. Among the HIV-1 RT inhibitors, non-nucleoside reverse transcriptase inhibitors (NNRTIs) constitute a prominent drug class, which includes nevirapine, delavirdine, efavirenz, etravirine, and rilpivirine approved for clinical use. However, the efficiency of many of these drugs has been undermined by drug-resistant variants of HIV-1 RT, and it therefore becomes inevitable to design novel drugs to cope with resistance. Here, we discuss various drug design strategies, which include traditional medicinal chemistry, computational chemistry, and chemical biology approaches. In particular, computational modeling approaches, including machine learning, empirical descriptors-based, force-field, ab initio, and hybrid quantum mechanics/molecular mechanics-based methods are discussed in detail. We foresee that these methods will have a major impact on efforts to guide the design and discovery of the next generation of NNRTIs that combat RT multidrug resistance. For further resources related to this article, please visit the WIREs website. Drug resistance is increasing in NNRTI-based HIV therapy, and this challenge needs to be met with integrative approaches.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/wcms.1328

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.