3 years ago

Genome-wide genetic structure and differentially selected regions among Landrace, Erhualian, and Meishan pigs using specific-locus amplified fragment sequencing

Qifa Li, Dongfeng Li, Zhaowei Cai, Lifan Zhang, Wei Wei, Hejun Li, Zhen Li, Shengjuan Wei, Jie Chen, Keliang Wu, Honglin Liu
As typical Chinese indigenous pig breeds, Erhualian and Meishan have been widely used to produce new strain or breed in the world. However, the genetic basis of characteristics of these pig breeds is still limited. Moreover, considering cost and output of sequencing, it is necessary to further develop cost-effective method for pig genome screening. To contribute on this issue, we developed a SLAF-seq (specific-locus amplified fragment sequencing) method for pigs and applied it to analyze the genetic difference among Landrace, Erhualian, and Meishan pigs. A total of 453.75 million reads were produced by SLAF-seq. After quality-control, 165,670 SNPs (single nucleotide polymorphisms) were used in further analysis. The results showed that Landrace had distinct genetic relationship compared to Erhualian (FST = 0.5480) and Meishan (FST = 0.5800), respectively, while Erhualian and Meishan held the relatively close genetic relationship (FST = 0.2335). Furthermore, a genome-wide scanning revealed 268 differentially selected regions (DSRs) with 855 genes and 256 DSRs with 347 genes between Landrace and the two Chinese indigenous pig breeds and between Erhualian and Meishan, respectively. This study provides a new cost-effective method for pig genome study and might contribute to a better understanding on the formation mechanism of genetic difference among pigs with different geographical origins.

Publisher URL: https://www.nature.com/articles/s41598-017-09969-6

DOI: 10.1038/s41598-017-09969-6

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.