3 years ago

Miscibility Transition Temperature Scales with Growth Temperature in a Zebrafish Cell Line

Miscibility Transition Temperature Scales with Growth Temperature in a Zebrafish Cell Line
Ilya Levental, Jing Wu, Sarah L. Veatch, Kathleen Wisser, Margaret Burns

Abstract

Cells can alter the lipid content of their plasma membranes upon changes in their environment to maintain and adjust membrane function. Recent work suggests that some membrane functions arise because cellular plasma membranes are poised close to a miscibility transition under growth conditions. Here we report experiments utilizing giant plasma membrane vesicles (GPMVs) to explore how membrane transition temperature varies with growth temperature in a zebrafish cell line (ZF4) that can be adapted for growth between 20 and 32°C. We find that GPMV transition temperatures adjust to be 16.7 ± 1.2°C below growth temperature for four growth temperatures investigated and that adjustment occurs over roughly 2 days when temperature is abruptly lowered from 28 to 20°C. We also find that GPMVs have slightly different lipidomes when isolated from cells adapted for growth at 28 and 20°C. Similar to past work in vesicles derived from mammalian cells, fluctuating domains are observed in ZF4-derived GPMVs, consistent with their having critical membrane compositions. Taken together, these experimental results suggest that cells in culture biologically tune their membrane composition in a way that maintains specific proximity to a critical miscibility transition.

Publisher URL: http://www.cell.com/biophysj/fulltext/S0006-3495(17)30505-2

DOI: 10.1016/j.bpj.2017.04.052

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.