4 years ago

Active Ornstein-Uhlenbeck particles. (arXiv:1905.04857v2 [cond-mat.soft] UPDATED)

L. L. Bonilla
Active Ornstein-Uhlenbeck particles (AOUPs) are overdamped particles in an interaction potential subject to external Ornstein-Uhlenbeck noises. They can be transformed into a system of underdamped particles under additional velocity dependent forces and subject to white noise forces. There has been some discussion in the literature on whether AOUPs can be in equilibrium for particular interaction potentials and how far from equilibrium they are in the limit of small persistence time. By using a theorem on the time reversed form of the AOUP Langevin-Ito equations, I prove that they have an equilibrium probability density invariant under time reversal if and only if their smooth interaction potential has zero third derivatives. In the limit of small persistence Ornstein-Uhlenbeck time $\tau$, a Chapman-Enskog expansion of the Fokker-Planck equation shows that the probability density has a local equilibrium solution in the particle momenta modulated by a reduced probability density that varies slowly with the position. The reduced probability density satisfies a continuity equation in which the probability current has an asymptotic expansion in powers of $\tau$. Keeping up to $O(\tau)$ terms, this equation is a diffusion equation, which has an equilibrium stationary solution with zero current. However, $O(\tau^2)$ terms contain fifth and sixth order spatial derivatives and the continuity equation no longer has a zero current stationary solution. The expansion of the overall stationary solution now contains odd terms in the momenta, which clearly shows that it is not an equilibrium.

Publisher URL: http://arxiv.org/abs/1905.04857

DOI: arXiv:1905.04857v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.