5 years ago

Major Reaction Coordinates Linking Transient Amyloid-β Oligomers to Fibrils Measured at Atomic Level

Major Reaction Coordinates Linking Transient Amyloid-β Oligomers to Fibrils Measured at Atomic Level
Bappaditya Chandra, Kaustubh R. Mote, Barun Kumar Maity, Sudipta Maiti, Perunthiruthy K. Madhu, Debabrata Dhara, Debanjan Bhowmik, Ravindra Venkatramani

Abstract

The structural underpinnings for the higher toxicity of the oligomeric intermediates of amyloidogenic peptides, compared to the mature fibrils, remain unknown at present. The transient nature and heterogeneity of the oligomers make it difficult to follow their structure. Here, using vibrational and solid-state nuclear magnetic resonance spectroscopy, and molecular dynamics simulations, we show that freely aggregating Aβ40 oligomers in physiological solutions have an intramolecular antiparallel configuration that is distinct from the intermolecular parallel β-sheet structure observed in mature fibrils. The intramolecular hydrogen-bonding network flips nearly 90°, and the two β-strands of each monomeric unit move apart, to give rise to the well-known intermolecular in-register parallel β-sheet structure in the mature fibrils. Solid-state nuclear magnetic resonance distance measurements capture the interstrand separation within monomer units during the transition from the oligomer to the fibril form. We further find that the D23–K28 salt-bridge, a major feature of the Aβ40 fibrils and a focal point of mutations linked to early onset Alzheimer's disease, is not detectable in the small oligomers. Molecular dynamics simulations capture the correlation between changes in the D23–K28 distance and the flipping of the monomer secondary structure between antiparallel and parallel β-sheet architectures. Overall, we propose interstrand separation and salt-bridge formation as key reaction coordinates describing the structural transition of the small Aβ40 oligomers to fibrils.

Publisher URL: http://www.cell.com/biophysj/fulltext/S0006-3495(17)30789-0

DOI: 10.1016/j.bpj.2017.06.068

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.