Spatially dispersive circular photogalvanic effect in a Weyl semimetal.
Weyl semimetals are gapless topological states of matter with broken inversion and/or time reversal symmetry, which can support unconventional responses to externally applied electrical, optical and magnetic fields. Here we report a new photogalvanic effect in type-II WSMs, MoTe2 and Mo0.9W0.1Te2, which are observed to support a circulating photocurrent when illuminated by circularly polarized light at normal incidence. This effect occurs exclusively in the inversion broken phase, where crucially we find that it is associated with a spatially varying beam profile via a new dispersive contribution to the circular photogalvanic effect (s-CPGE). The response functions derived for s-CPGE reveal the microscopic mechanism of this photocurrent, which are controlled by terms that are allowed in the absence of inversion symmetry, along with asymmetric carrier excitation and relaxation. By evaluating this response for a minimal model of a Weyl semimetal, we obtain the frequency dependent scaling behavior of this form of photocurrent. These results demonstrate opportunities for controlling photoresponse by patterning optical fields to store, manipulate and transmit information over a wide spectral range.
Publisher URL: http://arxiv.org/abs/1802.04387
DOI: arXiv:1802.04387v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.