Certified Roundoff Error Bounds using Bernstein Expansions and Sparse Krivine-Stengle Representations.
Floating point error is a drawback of embedded systems implementation that is difficult to avoid. Computing rigorous upper bounds of roundoff errors is absolutely necessary for the validation of critical software. This problem of computing rigorous upper bounds is even more challenging when addressing non-linear programs. In this paper, we propose and compare two new algorithms based on Bernstein expansions and sparse Krivine-Stengle representations, adapted from the field of the global optimization, to compute upper bounds of roundoff errors for programs implementing polynomial and rational functions. We also provide the convergence rate of these two algorithms. We release two related software package FPBern and FPKriSten, and compare them with the state-of-the-art tools. We show that these two methods achieve competitive performance, while providing accurate upper bounds by comparison with the other tools.
Publisher URL: http://arxiv.org/abs/1802.04385
DOI: arXiv:1802.04385v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.