Texture Classification in Extreme Scale Variations using GANet.
Research in texture recognition often concentrates on recognizing textures with intraclass variations such as illumination, rotation, viewpoint and small scale changes. In contrast, in real-world applications a change in scale can have a dramatic impact on texture appearance, to the point of changing completely from one texture category to another. As a result, texture variations due to changes in scale are amongst the hardest to handle. In this work we conduct the first study of classifying textures with extreme variations in scale. To address this issue, we first propose and then reduce scale proposals on the basis of dominant texture patterns. Motivated by the challenges posed by this problem, we propose a new GANet network where we use a Genetic Algorithm to change the units in the hidden layers during network training, in order to promote the learning of more informative semantic texture patterns. Finally, we adopt a FVCNN (Fisher Vector pooling of a Convolutional Neural Network filter bank) feature encoder for global texture representation.
Because extreme scale variations are not necessarily present in most standard texture databases, to support the proposed extreme-scale aspects of texture understanding we are developing a new dataset, the Extreme Scale Variation Textures (ESVaT), to test the performance of our framework. It is demonstrated that the proposed framework significantly outperforms gold-standard texture features by more than 10% on ESVaT. We also test the performance of our proposed approach on the KTHTIPS2b and OS datasets and a further dataset synthetically derived from Forrest, showing superior performance compared to the state of the art.
Publisher URL: http://arxiv.org/abs/1802.04441
DOI: arXiv:1802.04441v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.