5 years ago

Network Summarization with Preserved Spectral Properties.

Joseph F. JaJa, Yu Jin

Large-scale networks are widely used to represent object relationships in many real world applications. The occurrence of large-scale networks presents significant computational challenges to process, analyze, and extract information from such networks. Network summarization techniques are commonly used to reduce the computational load while attempting to maintain the basic structural properties of the original network. Previous works have primarily focused on some type of network partitioning strategies with application-dependent regularizations, most often resulting in strongly connected clusters.

In this paper, we introduce a novel perspective regarding the network summarization problem based on concepts from spectral graph theory. We propose a new distance measurement to characterize the spectral differences between the original and coarsened networks. We rigorously justify the spectral distance with the interlacing theorem as well the results from the stochastic block model. We provide an efficient algorithm to generate the coarsened networks that maximally preserves the spectral properties of the original network. Our proposed network summarization framework allows the flexibility to generate a set of coarsened networks with significantly different structures preserved from different aspects of the original network, which distinguishes our work from others. We conduct extensive experimental tests on a variety of large-scale networks, both from real-world applications and the random graph model. We show that our proposed algorithms consistently perform better results in terms of the spectral measurements and running time compared to previous network summarization algorithms.

Publisher URL: http://arxiv.org/abs/1802.04447

DOI: arXiv:1802.04447v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.