5 years ago

Examining the Tip of the Iceberg: A Data Set for Idiom Translation.

Christof Monz, Arianna Bisazza, Marzieh Fadaee

Neural Machine Translation (NMT) has been widely used in recent years with significant improvements for many language pairs. Although state-of-the-art NMT systems are generating progressively better translations, idiom translation remains one of the open challenges in this field. Idioms, a category of multiword expressions, are an interesting language phenomenon where the overall meaning of the expression cannot be composed from the meanings of its parts. A first important challenge is the lack of dedicated data sets for learning and evaluating idiom translation. In this paper we address this problem by creating the first large-scale data set for idiom translation. Our data set is automatically extracted from a widely used German-English translation corpus and includes, for each language direction, a targeted evaluation set where all sentences contain idioms and a regular training corpus where sentences including idioms are marked. We release this data set and use it to perform preliminary NMT experiments as the first step towards better idiom translation.

Publisher URL: http://arxiv.org/abs/1802.04681

DOI: arXiv:1802.04681v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.