Fully Convolutional Architectures for Multi-Class Segmentation in Chest Radiographs.
The success of deep convolutional neural networks on image classification and recognition tasks has led to new applications in very diversified contexts, including the field of medical imaging. In this paper we investigate and propose neural network architectures for automated multi-class segmentation of anatomical organs in chest radiographs, namely for lungs, clavicles and heart. We address several open challenges including model overfitting, reducing number of parameters and handling of severely imbalanced data in CXR by fusing recent concepts in convolutional networks and adapting them to the segmentation problem task in CXR. We demonstrate that our architecture combining delayed subsampling, exponential linear units, highly restrictive regularization and a large number of high resolution low level abstract features outperforms state-of-the-art methods on all considered organs, as well as the human observer on lungs and heart. The models use a multi-class configuration with three target classes and are trained and tested on the publicly available JSRT database, consisting of 247 X-ray images the ground-truth masks for which are available in the SCR database. Our best performing model, trained with the loss function based on the Dice coefficient, reached mean Jaccard overlap scores of 95.0\% for lungs, 86.8\% for clavicles and 88.2\% for heart. This architecture outperformed the human observer results for lungs and heart.
Publisher URL: http://arxiv.org/abs/1701.08816
DOI: arXiv:1701.08816v4
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.