5 years ago

High redshift extremely red quasars in X-rays.

Manda Banerji, Nadia L. Zakamska, Isabelle Paris, Daniel Stern, Dominika Wylezalek, Roberto J. Assef, Rachael M. Alexandroff, Michael A. Strauss, William N. Brandt, Jenny E. Greene, Fred Hamann, George B. Lansbury, Andy D. Goulding, Gordon Richards

Quasars may have played a key role in limiting the stellar mass of massive galaxies. Identifying those quasars in the process of removing star formation fuel from their hosts is an exciting ongoing challenge in extragalactic astronomy. In this paper we present X-ray observations of eleven extremely red quasars (ERQs) with $L_{\rm bol}\sim 10^{47}$ erg s$^{-1}$ at $z=1.5-3.2$ with evidence for high-velocity ($v > 1000$ km s$^{-1}$) [OIII]$\lambda$5007\AA\ outflows. X-rays allow us to directly probe circumnuclear obscuration and to measure the instantaneous accretion luminosity. We detect ten out of eleven extremely red quasars available in targeted and archival data. Using a combination of X-ray spectral fitting and hardness ratios, we find that all of the ERQs show signs of absorption in the X-rays with inferred column densities of $N_{\rm H}\approx 10^{23}$ cm$^{-2}$, including four Compton-thick candidates ($N_{\rm H} > 10^{24}$ cm$^{-2}$). We stack the X-ray emission of the seven weakly detected sources, measuring an average column density of $N_{\rm H}\sim 8\times 10^{23}$ cm$^{-2}$. The absorption-corrected (intrinsic) $2-10$ keV X-ray luminosity of the stack is $2.7\times 10^{45}$ erg s$^{-1}$, consistent with X-ray luminosities of type 1 quasars of the same infrared luminosity. Thus, we find that ERQs are a highly obscured, borderline Compton-thick population, and based on optical and infrared data we suggest that these objects are partially hidden by their own equatorial outflows. However, unlike some quasars with known outflows, ERQs do not appear to be intrinsically underluminous in X-rays for their bolometric luminosity. Our observations indicate that low X-rays are not necessary to enable some types of radiatively driven winds.

Publisher URL: http://arxiv.org/abs/1802.04272

DOI: arXiv:1802.04272v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.