Bekenstein Bounds, Penrose Inequalities, and Black Hole Formation.
A universal geometric inequality for bodies relating energy, size, angular momentum, and charge is naturally implied by Bekenstein's entropy bounds. We establish versions of this inequality for axisymmetric bodies satisfying appropriate energy conditions, thus lending credence to the most general form of Bekenstein's bound. Similar techniques are then used to prove a Penrose-like inequality in which the ADM energy is bounded from below in terms of horizon area, angular momentum, and charge. Lastly, new criteria for the formation of black holes is presented involving concentration of angular momentum, charge, and nonelectromagnetic matter energy.
Publisher URL: http://arxiv.org/abs/1802.04438
DOI: arXiv:1802.04438v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.