Photoassociation of rovibrational Rydberg molecules.
In this work we discuss the rotational structure of Rydberg molecules. We calculate the complete wave function in a laboratory fixed frame and derive the transition matrix elements for the pho- toassociation of free ground state atoms. We discuss the implications for the excitation of different rotational states as well as the shape of the angular nuclear wave function. We find a rather com- plex shape and unintuitive coupling strengths, depending on the angular momenta coupling that are relevant for the states. This work explains the different steps to calculate the wave functions and the transition matrix elements in a way, that they can be directly transferred to different molecular states, atomic species or molecular coupling cases.
Publisher URL: http://arxiv.org/abs/1802.04683
DOI: arXiv:1802.04683v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.