5 years ago

The consequences of a nearby supernova on the early Solar System.

Thomas Wijnen, Arjen van Elteren, Simon Portegies Zwart, Inti Pelupessy, Maria Lugaro

If the Sun was born in a relatively compact open cluster (half-mass radius ~3pc) with ~10^3 stars, it is quite likely that a massive (>10MSun) star was nearby when it exploded in a supernova. The repercussions of a supernova can be rather profound, and the current Solar System may still bear the memory of this traumatic event. The truncation of the Kuiper belt and the tilt of the ecliptic plane with respect to the Sun's rotation axis could be such signatures. We simulated the effect of a nearby supernova on the young Solar System using the Astronomical Multipurpose Software Environment. Our calculations are realized in two subsequent steps in which we study the effect of the supernova irradiation on the circumstellar disk and the effect of the impact of the nuclear blast-wave which arrives a few decades later. We find that the blast wave of our adopted supernova exploding at a distance of 0.15-0.40pc and at an angle of 35^0-65^0 with respect to the angular-momentum axis of the circumsolar disk would induce a misalignment between the Sun's equator and its disk to 5.6\pm1.2^0, consistent with the current value. The blast of a supernova truncates the disk at a radius between 42 and 55 au, which is consistent with the current edge of the Kuiper belt. For the most favored parameters, the irradiation by the supernova as well as the blast wave heat the majority of the disk to ~1200K, which is sufficiently hot to melt chondrules in the circumstellar disk. The majority of planetary system may have been affected by a nearby supernova, some of its repercussions, such as truncation and tilting of the disk, may still be visible in their current planetary system's topology. The amount of material from the supernova blast wave that is accreted by the circumstellar disk is too small by several orders of magnitude to explain the current abundance of the short live radionuclide Aluminum-26.

Publisher URL: http://arxiv.org/abs/1802.04360

DOI: arXiv:1802.04360v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.