5 years ago

Carbon Dioxide-Based Copolymers with Various Architectures

This review highlights recent advances in the synthesis of carbon dioxide (CO2)-based copolymers with both linear (di-, tri-, and multi-block, etc.) and non-linear (star-block and grafting) architectures. The corresponding catalytic systems are summarized. The microstructure and polymerization mechanism of various types of CO2-based copolymers, including block polycarbonates and block copolymers of polycarbonate with polyester, polyether, polyvinyl, and polydiene are discussed. The junction unit between two blocks, which indicates an abrupt change in the chain microstructure and property, is emphasized to define the microstructure of CO2-based block copolymers. Special attention was paid to one-pot terpolymerization for the synthesis of CO2-based block and grafting copolymers. Finally, the thermal, mechanical, and degradation properties and self-assembly of CO2-based block and grafting copolymers are reviewed. Prospective future research and applications of this new class of polymeric materials are discussed.

Publisher URL: www.sciencedirect.com/science

DOI: S0079670018300303

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.