3 years ago

Highly (001)-Textured Tetragonal BiFeO3 Film and Its Photoelectrochemical Behaviors Tuned by Magnetic Field

Highly (001)-Textured Tetragonal BiFeO3 Film and Its Photoelectrochemical Behaviors Tuned by Magnetic Field
Yuanhua Lin, Takashi Harumoto, Cewen Nan, Haomin Xu, Ji Shi
Highly (001)-textured BiFeO3 film in tetragonal phase (T-BFO) with a giant c/a ratio was first obtained on quartz/polycrystalline ITO substrate. Our results indicate that the polycrystalline ITO layer with small surface roughness is a critical point to control the growth of T-BFO structure. It should be ascribed to the fact that a Bi-rich phase interlayer (∼5 nm) could be formed on ITO, which acted as a crystal seed layer and thus induced the growth of (001)-textured T-BFO structure. The observed weak room temperature ferromagnetism should be attributed to Fe valence change. Open circuit potential measurements under 360 μW/cm2 full spectra irradiation show that the open circuit potential and the lifetime of photo-induced carriers increased under applied magnetic field, which reveals that the applied magnetic field can manipulate the photo electrochemical behaviors of BFO film. Our findings offer a simple way to fabricate highly (001)-textured T-BFO film, which make it desirable to obtain extensive applications for these oriented BFO films.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b07644

DOI: 10.1021/acsami.7b07644

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.