3 years ago

Rapid and Reliable Detection of Alkaline Phosphatase by a Hot Spots Amplification Strategy Based on Well-Controlled Assembly on Single Nanoparticle

Rapid and Reliable Detection of Alkaline Phosphatase by a Hot Spots Amplification Strategy Based on Well-Controlled Assembly on Single Nanoparticle
Jia-Ming Mai, Jia-Qiang Ren, Yi Zeng, Yan Zhang, Bing Qu, Ji-Ming Hu, Shao-Kai Wang, Ai-Guo Shen
The first appeal of clinical assay is always accurate and rapid. For alkaline phosphatase (ALP) monitoring in medical treatment, a rapid, reliable surface-enhanced Raman scattering (SERS) test kit is designed based on a “hot spots” amplification strategy. Consisting of alkyne-tagged Au nanoparticles (NPs), Ag+, and enzyme substrate, the packaged test kit can achieve one-step clinical assay of ALP in human serum within several minutes, while the operation is simple as it directly inputs the sample into the test kit. Here, Ag+ ions are adsorbed onto the surface of Au core due to electrostatic interaction between Ag+ and the negatively charged donor surface, then enzymatic biocatalysis of ALP triggers the reduction of Ag+ and subsequently silver growth occurs on every Au core surface in a controllable manner, forming “hot spots” between the Au core and Ag shell, in which the SERS signal of alkyne Raman reporters would be highly amplified. Meanwhile, ALP mediates a redox reaction of Ag+ as well as the dynamic silver coating process so the increase of SERS intensity is well-controlled and can be recognized with increasing amounts of the targets. Instead of conventional NP aggregation, this leads to a more reproducible result. In particular, the distinct Raman emission from our self-synthesized alkyne reporter is narrow and stable with zero background in the Raman silent region, suffering no optical fluctuation from biosystem inputs and the detection results are therefore reliable with a limit of detection of 0.01 U/L (2.3 pg/mL). Along with ultrahigh stability, this SERS test kit therefore is an important point-of-care candidate for a reliable, efficacious, and highly sensitive detection method for ALP, which potentially decreases the need for time-consuming clinical trials.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b09336

DOI: 10.1021/acsami.7b09336

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.