5 years ago

Titanium Oxynitride Thin Films with Tunable Double Epsilon-Near-Zero Behavior for Nanophotonic Applications

Titanium Oxynitride Thin Films with Tunable Double Epsilon-Near-Zero Behavior for Nanophotonic Applications
Ignacio Jose Villar Garcia, Sarah Fearn, Rupert F. Oulton, Anatoly V. Zayats, Brock Doiron, Laurentiu Braic, Bin Zou, Andrei Mihai, Peter K. Petrov, Neil McN. Alford, Stefan A. Maier, Nikolaos Vasilantonakis
Titanium oxynitride (TiOxNy) thin films are fabricated using reactive magnetron sputtering. The mechanism of their growth formation is explained, and their optical properties are presented. The films grown when the level of residual oxygen in the background vacuum was between 5 nTorr to 20 nTorr exhibit double epsilon-near-Zero (2-ENZ) behavior with ENZ1 and ENZ2 wavelengths tunable in the 700–850 and 1100–1350 nm spectral ranges, respectively. Samples fabricated when the level of residual oxygen in the background vacuum was above 2 × 10–8 Torr exhibit nonmetallic behavior, while the layers deposited when the level of residual oxygen in the background vacuum was below 5 × 10–9 Torr show metallic behavior with a single ENZ value. The double ENZ phenomenon is related to the level of residual oxygen in the background vacuum and is attributed to the mixture of TiN and TiOxNy and TiOx phases in the films. Varying the partial pressure of nitrogen during the deposition can further control the amount of TiN, TiOx, and TiOxNy compounds in the films and, therefore, tune the screened plasma wavelengths. A good approximation of the ellipsometric behavior is achieved with Maxwell–Garnett theory for a composite film formed by a mixture of TiO2 and TiN phases suggesting that double ENZ TiOxNy films are formed by inclusions of TiN within a TiO2 matrix. These oxynitride compounds could be considered as new materials exhibiting double ENZ in the visible and near-IR spectral ranges. Materials with ENZ properties are advantageous for designing the enhanced nonlinear optical response, metasurfaces, and nonreciprocal behavior.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b07660

DOI: 10.1021/acsami.7b07660

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.