5 years ago

Multiphoton Fabrication of Fibronectin-Functionalized Protein Micropatterns: Stiffness-Induced Maturation of Cell–Matrix Adhesions in Human Mesenchymal Stem Cells

Multiphoton Fabrication of Fibronectin-Functionalized Protein Micropatterns: Stiffness-Induced Maturation of Cell–Matrix Adhesions in Human Mesenchymal Stem Cells
Barbara P. Chan, Jiaoni Ma, Xinna Wang, Chuenwai Li, Minghui Tong, Alfonso H. W. Ngan, Nan Huang
Cell–matrix adhesions are important structures governing the interactions between cells and their microenvironment at the cell–matrix interface. The focal complex (FC) and focal adhesion (FA) have been substantially investigated in conventional planar culture systems using fibroblasts as an in vitro model. However, the formation of more mature types of cell–matrix adhesion in human mesenchymal stem cells (hMSCs), including fibrillar adhesion (FBA) and 3D matrix adhesion (3DMA), have not been fully elucidated. Here we investigate the niche factor(s) that influence(s) the maturation of FBA and 3DMA by using multiphoton fabrication-based micropatterning. First, the bovine serum albumin (BSA)-made protein micropatterns were functionalized by incorporating various concentrations of fibronectin (FN) in fabrication solution. The amount of cross-linked FN is positively correlated with the initial concentration of FN in the reaction liquid, as verified by immunofluorescence staining. On the other hand, the anisotropic FN-functionalized micropatterns were fabricated by varying the length (i.e., in-plane stiffness) and height (i.e., bending stiffness) of micropatterns, respectively. Finally, hMSCs were cultured on these micropatterns for 2 h and 1 day to determine the formation of FBA and 3DMA, respectively, using immunofluorescence staining. Results demonstrated that FN-functionalized micropatterns with high anisotropy in xy dimension benefit FBA maturation. Furthermore, niche factors such as higher bending and in-plane stiffness and the presence of abundant fibronectin have a positive effect on the maturation of FN-based cell–matrix adhesion. These findings could provide some new perspectives on designing platforms for further cell niche study and rationalizing scaffold design for tissue engineering.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b07064

DOI: 10.1021/acsami.7b07064

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.