3 years ago

Suppressing the Structure Deterioration of Ni-Rich LiNi0.8Co0.1Mn0.1O2 through Atom-Scale Interfacial Integration of Self-Forming Hierarchical Spinel Layer with Ni Gradient Concentration

Suppressing the Structure Deterioration of Ni-Rich LiNi0.8Co0.1Mn0.1O2 through Atom-Scale Interfacial Integration of Self-Forming Hierarchical Spinel Layer with Ni Gradient Concentration
Lin Gu, Zhongbo Hu, Rui Gao, Zhenzhong Yang, Xiangfeng Liu, Jicheng Zhang
Ni-rich layered cathodes have attracted great interest due to the high specific capacity, but they suffer from the layered structure deterioration and the resultant poor cyclability and inferior storage performance. Herein, we propose a novel facile strategy to in situ generate an integrated hierarchical spinel layer on the surface of layered LiNi0.8Co0.1Mn0.1O2 (SC-LNCMO) through a pH modulation induced gradient change of Mn ions valence in the precursor. The self-forming hierarchical spinel layer through this strategy is tightly integrated into the layered phase by atom-scale interfacial junctions, and a Ni gradient concentration from the outer to inner has also formed, which strengthens the interface bonding, reduces the surface layer–host phase mismatch, alleviates the Li+/Ni2+ mixing, and substantially enhances the structure stability of LiNi0.8Co0.1Mn0.1O2 during charge–discharge cycles. These contribute to the large improvement of the cycling stability, rate capability, and low-temperature performances. More importantly, the long-term storage stability of SC-LNCMO has also been significantly improved due to the effective suppression of the integrated spinel layer on the reduction of Ni3+ to Ni2+, cations migration and Li+/Ni2+ exchange, and Li2CO3 formation. This study not only offers a facile novel strategy to create tightly integrated spinel-layered high-performance cathode materials but also presents some new insights into the structure deterioration and the stabilization mechanism of Ni-rich layered cathode materials during charge/discharge cycles or long-term storage.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b08802

DOI: 10.1021/acsami.7b08802

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.