3 years ago

Porous Carbon Materials Based on Graphdiyne Basis Units by the Incorporation of the Functional Groups and Li Atoms for Superior CO2 Capture and Sequestration

Porous Carbon Materials Based on Graphdiyne Basis Units by the Incorporation of the Functional Groups and Li Atoms for Superior CO2 Capture and Sequestration
Wenyue Guo, Lianming Zhao, Yong Dang, Houyu Zhu
The graphdiyne family has attracted a high degree of concern because of its intriguing and promising properties. However, graphdiyne materials reported to date represent only a tiny fraction of the possible combinations. In this work, we demonstrate a computational approach to generate a series of conceivable graphdiyne-based frameworks (GDY-Rs and Li@GDY-Rs) by introducing a variety of functional groups (R = −NH2, −OH, −COOH, and −F) and doping metal (Li) in the molecular building blocks of graphdiyne without restriction of experimental conditions and rapidly screen the best candidates for the application of CO2 capture and sequestration (CCS). The pore topology and morphology and CO2 adsorption and separation properties of these frameworks are systematically investigated by combining density functional theory (DFT) and grand canonical Monte Carlo (GCMC) simulations. On the basis of our computer simulations, combining Li-doping and hydroxyl groups strategies offer an unexpected synergistic effect for efficient CO2 capture with an extremely CO2 uptake of 4.83 mmol/g at 298 K and 1 bar. Combined with its superior selectivity (13 at 298 K and 1 bar) for CO2 over CH4, Li@GDY-OH is verified to be one of the most promising materials for CO2 capture and separation.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b10836

DOI: 10.1021/acsami.7b10836

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.