5 years ago

Cocatalyzing Pt/PtO Phase-Junction Nanodots on Hierarchically Porous TiO2 for Highly Enhanced Photocatalytic Hydrogen Production

Cocatalyzing Pt/PtO Phase-Junction Nanodots on Hierarchically Porous TiO2 for Highly Enhanced Photocatalytic Hydrogen Production
Min Wu, Liang Wu, Bao-Lian Su, Jing Liu, Chao Wang, Jun Jin, Yu Li, Fu Liu, Zhi-Yi Hu, Gustaaf Van Tendeloo, Xiao-Ning Ren
Phase-junctions between a cocatalyst and its semiconductor host are quite effective to enhance the photocatalytic activity and are widely studied, while reports on the phase-juncted cocatalyst are still rare. In this work, we report the deposition of the Pt/PtO phase-juncted nanodots as cocatalyst via NaOH modification of an interconnected meso-macroporous TiO2 network with high surface area and inner-particle mesopores to enhance the performance of photocatalytic H2 production. Our results show that NaOH modification can largely influence Pt/PtO phase-juncted nanodot formation and dispersity. Compared to the TiO2 nanoparticles, the hierarchically meso-macroporous TiO2 network containing 0.18 wt % Pt/PtO phase-juncted cocatalyst demonstrates a highest photocatalytic H2 rate of 13 mmol g–1 h–1 under simulated solar light, and possesses a stable cycling activity without obvious decrease after five cycles. Such high H2 production performance can be attributed to both the phase-juncted Pt/PtO providing more active sites while PtO suppresses the undesirable hydrogen back reaction, and the special hierarchically porous TiO2 network with inner-particle mesopores presenting short diffusion path lengths for photogenerated electrons and enhanced light harvesting efficiency. This work suggests that Pt/PtO phase-juncted cocatalyst on hierarchically porous TiO2 nanostructures is a promising strategy for advanced photocatalytic H2 production.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b07226

DOI: 10.1021/acsami.7b07226

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.