5 years ago

Focused ultrasound transducer spatial peak intensity estimation: a comparison of methods.

John Civale, Gail R Ter Haar, Adam Shaw, Ian Rivens
Characterisation of the spatial peak intensity at the focus of high intensity focused ultrasound (HIFU) transducers is difficult because of the risk of damage to hydrophone sensors at the high focal pressures generated. Hill et al (1994) provided a simple equation for estimating spatial-peak intensity for solid spherical bowl transducers using measured acoustic power and focal beamwidth. This paper demonstrates theoretically and experimentally that this expression is only strictly valid for spherical bowl transducers without a central (imaging) aperture. A hole in the centre of the transducer results in over-estimation of the peak intensity. Improved strategies for determining focal peak intensity from a measurement of total acoustic power are proposed. Four methods are compared: (i) a solid spherical bowl approximation (after Hill et al 1994), (ii) a numerical method derived from theory, (iii) a method using measured sidelobe to focal peak pressure, and (iv) a method for measuring the focal power fraction (FPF) experimentally. Spatial-peak intensities were estimated for 8 transducers at three drive powers levels: low (approximately 1W), moderate (~10W) and high (20 - 70W). The calculated intensities were compared with those derived from focal peak pressure measurements made using a calibrated hydrophone. The FPF measurement method was found to provide focal peak intensity estimates that agreed most closely (within 15%) with the hydrophone measurements, followed by the pressure ratio method (within 20%). The numerical method was found to consistently over-estimate focal peak intensity (+40% on average), however, for transducers with a central hole it was more accurate than using the solid bowl assumption (+70% overestimation). In conclusion, the ability to make use of an automated beam plotting system, and a hydrophone with good spatial resolution, greatly facilitates characterisation of the FPF, and consequently gives improved confidence in estimating spatial peak intensity from measurement of acoustic power.

Publisher URL: http://doi.org/10.1088/1361-6560/aaaf01

DOI: 10.1088/1361-6560/aaaf01

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.