3 years ago

Removal of Cells from Body Fluids by Magnetic Separation in Batch and Continuous Mode: Influence of Bead Size, Concentration, and Contact Time

Removal of Cells from Body Fluids by Magnetic Separation in Batch and Continuous Mode: Influence of Bead Size, Concentration, and Contact Time
Inge K. Herrmann, Lukas Gerken, Elena Tsolaki, Kerda Keevend, Nils Bohmer, Marco Lattuada, Sergio Bertazzo, Nino Demarmels
The magnetic separation of pathogenic compounds from body fluids is an appealing therapeutic concept. Recently, removal of a diverse array of pathogens has been demonstrated using extracorporeal dialysis-type devices. The contact time between the fluid and the magnetic beads in such devices is limited to a few minutes. This poses challenges, particularly if large compounds such as bacteria or cells need to be removed. Here, we report on the feasibility to remove cells from body fluids in a continuous dialysis type of setting. We assessed tumor cell removal efficiencies from physiological fluids with or without white blood cells using a range of different magnetic bead sizes (50–4000 nm), concentrations, and contact times. We show that tumor cells can be quantitatively removed from body fluids within acceptable times (1–2 min) and bead concentrations (0.2 mg per mL). We further present a mathematical model to describe the minimal bead number concentration needed to remove a certain number of cells, in the presence of competing nonspecific uptake. The present study paves the way for investigational studies to assess the therapeutic potential of cell removal by magnetic blood purification in a dialysis-like setting.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b10140

DOI: 10.1021/acsami.7b10140

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.