3 years ago

Ni3S2 Nanosheet Flowers Decorated with CdS Quantum Dots as a Highly Active Electrocatalysis Electrode for Synergistic Water Splitting

Ni3S2 Nanosheet Flowers Decorated with CdS Quantum Dots as a Highly Active Electrocatalysis Electrode for Synergistic Water Splitting
Mengmeng Yin, Chaorong Li, Sijun Chu, Guangliang Chen, Jinsong Yu, Jun Huang, Wei Hu, Rui Zhang, Shanqing Qu
A facile and effective strategy for fabricating a three-dimensionally (3D) structured nanocomposite catalyst based on nonprecious metals for water splitting in alkaline electrolyzers is reported in this paper. This nanocomposite catalyst consists of the CdS quantum dots (QDs) decorated Ni3S2 nanosheet flowers deposited on the plasma-treated nickel foam (PNF). The NiO formed during the plasma treatment is shown to play an important role for pushing the hydrogen and oxygen evolution reactions (HER and OER) in alkaline media. The enhanced exposure of active sites on the nanopetalages results in superior catalytic performance for promoting HER and OER in alkaline electrolyzers. Specifically, a current density of 10 mA cm–2 can be achieved for the HER with a 121 mV overpotential when the working electrode based on the 1 mM CdS/Ni3S2/PNF catalyst is employed in 1 M KOH. The corresponding Tafel slope is 110 mV/decade. For the OER, the onset potential can be as low as 1.25 V vs reversible hydrogen electrode (RHE) reference electrode, which is substantially lower than the commercial IrO2 catalyst (∼1.47 V). This nanostructured catalyst has excellent long-term stability, and the linear scan voltammetry (LSV) curves of the HER and OER in 1 M KOH solution show negligible decay after undergoing 104 cycles of cyclic voltammogram. The nanocomposite material developed in this study is an ideal candidate as a catalyst for splitting water in alkaline media with relatively low overpotentials at reasonably high current densities (≥100 mA cm–2).

Publisher URL: http://dx.doi.org/10.1021/acsami.7b06377

DOI: 10.1021/acsami.7b06377

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.