3 years ago

From Growth Surface to Device Interface: Preserving Metallic Fe under Monolayer Hexagonal Boron Nitride

From Growth Surface to Device Interface: Preserving Metallic Fe under Monolayer Hexagonal Boron Nitride
Hikmet Sezen, John Robertson, Santiago Esconjauregui, Stephan Hofmann, Marie-Blandine Martin, Sabina Caneva, Luca Gregoratti, Adrianus I. Aria, Lorenzo D’Arsié, Robert S. Weatherup, Hisashi Sugime, Matteo Amati
We investigate the interfacial chemistry between Fe catalyst foils and monolayer hexagonal boron nitride (h-BN) following chemical vapor deposition and during subsequent atmospheric exposure, using scanning electron microscopy, X-ray photoemission spectroscopy, and scanning photoelectron microscopy. We show that regions of the Fe surface covered by h-BN remain in a metallic state during exposure to moist air for ∼40 h at room temperature. This protection is attributed to the strong interfacial interaction between h-BN and Fe, which prevents the rapid intercalation of oxidizing species. Local Fe oxidation is observed on bare Fe regions and close to defects in the h-BN film (e.g., domain boundaries, wrinkles, and edges), which over the longer-term provide pathways for slow bulk oxidation of Fe. We further confirm that the interface between h-BN and metallic Fe can be recovered by vacuum annealing at ∼600 °C, although this is accompanied by the creation of defects within the h-BN film. We discuss the importance of these findings in the context of integrated manufacturing and transfer-free device integration of h-BN, particularly for technologically important applications where h-BN has potential as a tunnel barrier such as magnetic tunnel junctions.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b08717

DOI: 10.1021/acsami.7b08717

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.