3 years ago

Stable Superhydrophobic Porous Coatings from Hybrid ABC Triblock Copolymers and Their Anticorrosive Performance

Stable Superhydrophobic Porous Coatings from Hybrid ABC Triblock Copolymers and Their Anticorrosive Performance
Hui Li, Jiaotong Sun, Chaobin He, Junhua Kong, Xin Zhou
Superhydrophobic porous surfaces with ultralow water adhesion were successfully fabricated via micelle fusion–aggregation assembly of newly designed linear hybrid ABC triblock copolymers, where A, B, and C denote poly(dimethylsiloxane) (PDMS), polystyrene (PS), and poly(methacrylolsobutyl polyhedral oligomeric silsesquioxane) (PiBuPOSSMA), respectively. It was found that aggregation behavior in diluted solution and subsequent formation of nano-/microscale hierarchical surfaces in condensed state were affected by the molar mass of the triblock copolymers, which were evidenced by dynamic light scattering (DLS), SEM, and TEM studies. Increasing of PiBuPOSSMA content can significantly increase roughness of the resulting coatings, leading to an increase of apparent water contact angles from 145.7 ± 1° to 157.3 ± 1.1°. The optimized PDMS–PS–PiBuPOSSMA surface possesses unique nano/microscale hierarchical morphology, large apparent water contact angle (157.3 ± 1.1°), small roll-off angle (∼3°), low contact angle hysteresis (∼0.9°), long-term stability, and good chemical and thermal resistance. Moreover, it exhibits superior performance in preventing corrosive species such as ions and water in contact with the underlying metallic substrate (stainless steel) in 3.5 wt % NaCl aqueous solution with high inhibition efficiency and long-term preservability, which could be attributed to the synergistic effect of superhydrophobic surface and capillary action arising from the underlying porous structure.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b08482

DOI: 10.1021/acsami.7b08482

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.