3 years ago

Silica stationary phase functionalized by 4-carboxy-benzoboroxole with enhanced boronate affinity nature for selective capture and separation of cis-diol compounds

Silica stationary phase functionalized by 4-carboxy-benzoboroxole with enhanced boronate affinity nature for selective capture and separation of cis-diol compounds
4-Carboxy-benzoboroxole was designed and synthesized. It was then combined with the modification effect of polyethyleneimine (PEI) for the preparation of boronate affinity silica stationary phase. The stationary phase showed improved binding strength with dissociation constant (K d ) towards xanthosine as low as 2.48 × 10−4 M. The column showed excellent selectivity, high binding capacities (88.3 μmol adenosine g−1, pH 7.0) and the lowest binding pH (4.0 for cytidine and as low as 2.24 for xanthosine). These binding properties were superior to the existing boronate affinity materials, facilitating the selective extraction of trace cis-diol compounds in complex samples and greatly expanding the application scope of boronate affinity chromatography. In addition, the column showed secondary separation capability under acidic conditions and this secondary separation capability was investigated thoroughly. It was found that the separation was pH-dependent and mainly determined by binding strength with the possibility of involvement of other interaction, providing alternative strategy for the separation of cis-diol compounds. The feasibility and practicability were demonstrated through the selective enrichment of nucleosides in urine samples and the results indicated the excellent performance and great potential for the extraction of trace cis-diol compounds in complex samples.

Publisher URL: www.sciencedirect.com/science

DOI: S0003267017307912

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.