5 years ago

Reduced graphene oxide as a resonance light-scattering probe for thrombin detection using dual-aptamer-based dsDNA

Reduced graphene oxide as a resonance light-scattering probe for thrombin detection using dual-aptamer-based dsDNA
This paper describes a reduced graphene oxide (RGO)-based resonance light-scattering (RLS) method for thrombin detection by using double strand DNA (dsDNA) as a binding element. dsDNA is obtained by hybridizing DNA1 and DNA2, which respectively consist of one aptamer of thrombin and the complementary strand of the other aptamer of thrombin. When thrombin is added, the specific binding of two aptamers to thrombin results in a complex (DNA1–thrombin–DNA2) and triggers the release of the complementary strand of two aptamers from dsDNA. The released ssDNA can be self-assembled on the surface of RGO to form a stable DNA1–thrombin–DNA2–RGO complex, which increases RLS signals. This simple and rapid method has enabled the detection of thrombin in the picomolar level in buffer and human serum samples. This study is the first to use RGO as a platform in RLS sensor, which can extend the application of RGO.

Publisher URL: www.sciencedirect.com/science

DOI: S0003267017307547

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.