3 years ago

Quantum-dot nanoprobes and AOTF based cross talk eliminated six color imaging of biomolecules in cellular system

Quantum-dot nanoprobes and AOTF based cross talk eliminated six color imaging of biomolecules in cellular system
Primary cell cultures mimic the physiology and genetic makeup of in-vivo tissue of origin, nonetheless, a complication in the derivation and propagation of primary cell culture limits its use in biological research. However, in-vitro models using primary cells might be a complement model to mimic in vivo response. But, conventional techniques such as western blot and PCR employed to study the expression and activation of proteins requires a large number of cells, hence repeated establishment and maintenance of primary culture are unavoidable. Quantum dot (Q-dot) and acousto-optic tunable filters (AOTF) based multiplex imaging system is a viable alternative choice to evaluate multiple signaling molecules by using a small number of cells. Q-dots have broad excitation and narrow emission spectra, which allows to simultaneously excite multiple Q-dots by using single excitation wavelength. The use of AOTF in the fluorescence detection system enables to scan the fluorescence emission intensity of a Q-dot at their central wavelength, this phenomenon effectively avoids spectral overlap among the neighboring Q-dots. When Q-dots are conjugated with antibodies it acts as effective sensing probes. To validate this, the expression pattern of p-JNK-1, p-GSK3β, p-IRS1ser, p-IRS1tyr, p-FOXO1, and PPAR-γ, involved in the insulin resistance were concurrently monitored in adipocyte and HepG2 co-cell culture model. The observed results clearly indicate that PPAR-γ is the critical component in the development of insulin resistance. Moreover, the results proved that developed Q-dot based AOTF imaging methodology is a sensible choice to concurrently monitor multiple signaling molecules with limited cell population.

Publisher URL: www.sciencedirect.com/science

DOI: S000326701730795X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.