5 years ago

Metal–Organic Frameworks for Heterogeneous Basic Catalysis

Metal–Organic Frameworks for Heterogeneous Basic Catalysis
Lin-Bing Sun, Xiao-Qin Liu, Hai-Long Jiang, Li Zhu
Great attention has been given to metal–organic frameworks (MOFs)-derived solid bases because of their attractive structure and catalytic performance in various organic reactions. The extraordinary skeleton structure of MOFs provides many possibilities for incorporation of diverse basic functionalities, which is unachievable for conventional solid bases. The past decade has witnessed remarkable advances in this vibrant research area; however, MOFs for heterogeneous basic catalysis have never been reviewed until now. Therefore, a review summarizing MOFs-derived base catalysts is highly expected. In this review, we present an overview of the recent progress in MOFs-derived solid bases covering preparation, characterization, and catalytic applications. In the preparation section, the solid bases are divided into two categories, namely, MOFs with intrinsic basicity and MOFs with modified basicity. The basicity can originate from either metal sites or organic ligands. Different approaches used for generation of basic sites are included, and each approach is described with representative examples. The fundamental principles for the design and fabrication of MOFs with basic functionalities are featured. In the characterization section, experimental techniques and theoretical calculations employed for characterization of basic MOFs are summarized. Some representive experimental techniques, such as temperature-programmed desorption of CO2 (CO2-TPD) and infrared (IR) spectra of different probing molecules, are covered. Following preparation and characterization, the catalytic applications of MOFs-derived solid bases are dealt with. These solid bases have potential to catalyze some well-known “base-catalyzed reactions” like Knoevenagel condensation, aldol condensation, and Michael addition. Meanwhile, in contrast to conventional solid bases, MOFs show some different catalytic properties due to their special structural and surface properties. Remarkably, characteristic features of MOFs-derived solid bases are described by comparing with conventional inorganic counterparts, keeping in mind the current opportunities and challenges in this field.

Publisher URL: http://dx.doi.org/10.1021/acs.chemrev.7b00091

DOI: 10.1021/acs.chemrev.7b00091

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.