5 years ago

Soil-dependent optimum design of a new passive vibration control system combining seismic base isolation with tuned inerter damper

The papers addresses a novel passive vibration control system combining seismic base isolation with a tuned inerter damper (TID) system. The latter, by analogy with the tuned mass damper (TMD), is a dynamic vibration absorber in which the physical mass of the TMD is partly or entirely replaced by an apparent mass, also called inertance, created by a particular arrangement of mechanical gearings—the inerter. By attaching a TID to the isolation floor, not only the displacement demand of base-isolated structures can be significantly reduced, but also the superstructure response (e.g. interstory drift, base shear) is effectively controlled. Optimum parameters of this system are found based on a simplified three degree-of-freedom model that reflects the dynamic properties of both the isolation system and the TID while accounting for the flexibility of the base-isolated superstructure. Within a probabilistic framework, the influence of soil conditions is investigated by modeling the seismic ground motion as a filtered Gaussian random process. Different filter parameters are considered that may be associated with firm, medium or soft soil conditions depending on the frequency content of the power spectral density function. A wide parametric study is performed in order to detect the optimal TID parameters depending on the soil conditions for a variety of isolation ratios, mass ratios and damping ratios of both the superstructure and the isolation system. Finally, a multi-story building equipped with the proposed passive vibration control system is examined. Effectiveness of the proposed system is assessed via the evaluation of the structural response in the time domain. Detuning effects are investigated via a sensitivity analysis. Comparison with alternative passive vibration control systems proposed in the literature and based on different arrangements of TMD and inerter-based device is discussed.

Publisher URL: www.sciencedirect.com/science

DOI: S0267726117307029

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.