5 years ago

Experimental mapping of elastoplastic surfaces for sand using undrained perturbations

Elastoplastic models are commonly used in modern geotechnical practice to numerically predict displacements, stresses, and pore pressures in large construction projects. These elastoplastic models use presumed functional forms for yield and plastic potential functions that are rarely obtained from experimental measurements. This research describes a simple experimental technique that can be used to obtain the slopes of the plastic potential and yield functions during shear based on the deformation theory of plasticity. The method imposes small perturbations in the direction of the stress increment by closing the drainage valve, thereby abruptly switching from drained to undrained loading conditions during plastic loading. Elastoplastic moduli are obtained immediately before and after the perturbations from the measured deviatoric stress, mean effective stress, deviatoric strains, and volumetric strains for the stress paths immediately before and immediately after closing the drain valve. During drained shear, samples were sheared while the mean effective stress was maintained constant. Combining tests performed at several confining stresses, the proposed method was able to map conventional isotropic yield and plastic potential surfaces and predict their evolution for a wide range of stresses. The proposed technique can also be used for kinematic yield surfaces and to develop new and more accurate elastoplastic constitutive models.

Publisher URL: www.sciencedirect.com/science

DOI: S0038080617301695

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.