5 years ago

Different Response Kinetics to Temperature and Water Vapor of Acrylamide Polymers Obtained by Initiated Chemical Vapor Deposition

Different Response Kinetics to Temperature and Water Vapor of Acrylamide Polymers Obtained by Initiated Chemical Vapor Deposition
Anna Maria Coclite, Alberto Perrotta, Paul Salzmann
Thermoresponsive polymers undergo a reversible phase transition at their lower critical solution temperature (LCST) from a hydrated hydrophilic state at temperatures below the LCST to a collapsed hydrophobic state at higher temperatures. This results in a strong response to temperature when in aqueous environment. This study shows that hydrogel thin films synthesized by initiated chemical vapor deposition show fast and strong response to temperature also in water vapor environment. Thin films of cross-linked poly(N-isopropylacrylamide), p(NIPAAm), were found to have a sharp change in thickness by 200% in water vapor at temperatures above and below the LCST. Additionally, the stimuli-responsive poly(N,N-diethylacrylamide) was investigated and compared to results found for p(NIPAAm). Analysis of the swelling kinetics performed with in situ spectroscopic ellipsometry with variable stage temperature shows differences for swelling and deswelling processes, and a hysteresis in the thickness profile was found as a function of temperature and of temperature change rate.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b18878

DOI: 10.1021/acsami.7b18878

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.