5 years ago

Effect of Thiolated Ligands in Au Nanowire Synthesis

Effect of Thiolated Ligands in Au Nanowire Synthesis
Yawen Wang, Jiating He, Hongyu Chen, Suzhu Yu
Thiolated ligands are seldom used as morphology-directing reagent in the synthesis of Au nanostructures due to their low selectivity toward the different facets. Recently, we developed a thiolated ligands-induced synthesis of nanowires where the selective Au deposition only occurs at the ligand-deficient Au–substrate interface. Herein, the structural effect of thiolated ligands in this active surface growth is systematically investigated. It is revealed that their ability of rendering surface is closely related to the molecular structure. Ligands with aromatic backbones are capable of inducing nanowire formation, whereas those with aliphatic backbones cannot, likely because the former can pack better at short time scale of the rapid growth. The substituents of the ligands are critical for the colloidal stability of the final structure. It is further demonstrated that aromatic and aliphatic ligands could be mixed to turn on the continual lateral growth, leading to nanowires with tapered ends. The ligand generality in this growth mode also allows the creation of superhydrophobic surface, with the nanowire forest providing the nanoscale surface roughness and the hydrophobic ligand offering the surface property. These applications of the thiolated ligands in the nanosynthesis open a new approach for controlled synthesis of Au-based nanostructures with various morphologies and properties. The effect of the thiolated ligands in the synthesis of the Au nanowires is explored. The molecular structure of the ligands plays important role in their ability of rendering the Au surface in such short time scale and nonequilibrium condition, and thus provides new approaches for designing Au nanostructures.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/smll.201702121

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.